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Abstract

The paper studies some ill-posed boundary value problems on semi-plane for
parabolic equations with the homogenous Cauchy condition at initial time and
with the second-order Cauchy condition on the boundary of the semi-plane. A
class of inputs that allows some regularity is suggested and described explicitly
in the frequency domain. This class is everywhere dense in the space of square
integrable functions.

PACS numbers: 02.60.Lj, 02.30.Jr, 02.30.Fn, 02.30.Tb
Mathematics Subject Classification: 35K20, 35Q99, 32A35

Parabolic equations such as heat equations have fundamental significance for natural sciences,
and various boundary value problems for them were widely studied including well-posed
problems as well as the so-called ill-posed problems that are often significant for applications.
The present paper introduces and investigates a special boundary value problem on semi-plane
for parabolic equations with the homogenous Cauchy condition at initial time and with the
second-order Cauchy condition on the boundary of the semi-plane. The problem is ill posed.
A set of solvability or a class of inputs that allows some regularity in the form of prior energy-
type estimates is suggested and described explicitly in the frequency domain. This class is
everywhere dense in the class of Lj-integrable functions. This result looks counterintuitive,
since these boundary conditions are unusual; solvability of this boundary value problem for a
wider class of inputs is inconsistent with basic theory.

1. The problem setting

Let us consider the following boundary value problem:

du 3%u ou
a—x,t)= —x,t)+b—(x,t) +culx,t)+ f(x,1),
0x2 ox

ot
u(x,0) =0, (1)
ou
u(0,1) = go(1), 5(0, 1 =g @).

1751-8113/07/4112409+05$30.00 © 2007 IOP Publishing Ltd  Printed in the UK 12409


http://dx.doi.org/10.1088/1751-8113/40/41/010
http://stacks.iop.org/JPhysA/40/12409

12410 N Dokuchaev

Here, x > 0,7 > 0and a > 0; b, ¢ € R are constants; g; € L,(0,+00),k = 1,2; and f is a
measurable function such that f; dx [;° | f(x,1)|*dt < +oo forall y > 0.

This problem is ill posed (see Tikhonov and Arsenin (1977)).

Let © = b*/4 — c. We assume that 1 > 0. Note that this assumption does not reduce
generality for the cases when we are interested in a solution on a finite time interval, since we
can rewrite the parabolic equation as that with ¢ replaced by ¢ — M for any M > 0 and g (¢)
replaced by e ™! g, (¢); the solution u; of the new equation is related to the solution u of the
old one as uy (x, 1) = e Mu(x, t).

Definitions and special functions

A

Let R* = [0, +00), C* = {z € C : Rez > 0}. For v € Ly(R), we denote by Fv and Lv the
Fourier and the Laplace transforms, respectively:

V(iw) = (Fv)(iw) = —oty(t) dt, weR, )

7 he

V(p) = (Lv)(p) = e Pu(r)dr, peC. 3)

1 / o0
V2 Jo
Let H" be the Hardy space of holomorphic on C* functions i (p) with finite norm
1Al = Supgo lh(k +iw)|lL, vy, T € [1, +00] (see, e.g., Duren (1970)).
For y > 0, let W(y) be the Banach space of the functions u : (0, y) x R* — R with the
ou 0%u
P (-x7 )

finite norm
—— .
0x 0x L>(RY) )

The class W(y) is such that all the equations presented in problem (1) are well defined for
any u € W(y) and in the domain (0, y) x R*. For instance, if v € W(y), then, for any
t, > 0, we have that v|j yix0,,) € C([0, 1], L2(0, ¥)) as a function of ¢ € [0, #,]. Hence,
the initial condition at time ¢t = 0 is well defined as an equality in L, ([0, y]). Further, we

have that vljo yjxr+ € C([0, y], Lo(R*)) and 3—;’ ’[o SR+ € C([0, y], L,(R™")) as functions of
dv :

x € [0, y]. Hence the functions v(0, 1), g (x, 1)|x=o are well defined as elements of L, (R™),
and the boundary value conditions at x = 0 are well defined as equalities in L, (R*).

ou
ot

+
L>(RY)

(.X, )

+
Lr(R*)

(-xv )

A
lullwey = sup @u(X, Mr,®s +
x€(0,y)

Special smoothing kernel

Let us introduce the set of the following special function:
K(p) = Kapq(p) =e P, peC. (4)

Here ¢ > 0,8 > 0 are reals and g € (%, 1) is a rational number. We mean the branch of
(p + B)? such that its argument is g Arg (p + B), where Arg z € (—m, 7] denotes the principal
value of the argument of z € C.

The functions K, g ,(p) are holomorphic in C*, and

In|K(p)| = —Re (a(p + f)?) = —alp + B|? cos[q Arg (p + B)].

In addition, there exists M = M (B, ¢) > 0 such that cos[q Arg (p + B)] > M for all p € C*.
It follows that

K (p)| e oMt <1, peC. (&)

Hence, K € H” forall r € [1, +o0].
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Proposition 1. Let 8 > 0 and a rational number q € (%, 1) be given. Let v € L,(R*),V =

Lv € H?. Fora > 0, setV, = w.pq Vs Vo = F W, (iw)|per. Then Vy, € H? and vy, — v
inLRY)Yasa — 0,a > 0.

Proof. Clearly, V, (iw) — V(iw) as @ — 0 for a.e. w € R. By (4), V,, € H?. In addition,
Ko p,q(iw)| < 1. Hence, |V, (iw) — V(iw)| < 2|V (iw)|. We have that |V (iw)|lL,® =
lvllr,r+) < +oo. By the Lebesgue dominance theorem, it follows that

Ve Gw) — V@), w) — O as a — 0.

Hence, v, — v in Ly(R*) as @« — 0. Then the proof follows. O

The inverse Fourier transform k(t) = F~ 'K, .4 (iw)|wer can be viewed as a smoothing
kernel; k() = 0 for ¢t < 0. It can be seen that k has derivatives of any order.

Denote by C the set of functions v : R* — R such that there exist @ > 0, 8 > 0, and a
rational number ¢ € (3, 1), such that V e H?, where V(p) = Kupqa(p)~'V(p),V = L.

The set C includes outputs of the convolution integral operators with the kernels k(¢). By
proposition 1, it follows that the set C is everywhere dense in L, (R").

2. The main result
Set F(x, ) = Lf(x, -), where x > 0 is given, and G = Lgi, k = 0, 1.

Theorem 1. Let the functions f and gy are such that there exist y > 0,a > 0,8 > 0,
a rational number q € (%, 1), such that Gy € H? F(x,-) € H? for ae. x > 0 and
Jo IF (s, )l g2 ds < +o0, where

—~ » F(x, ~ s G
Forp) 2 &;% m@ﬁ=§g,

and where the function K = K p 4 is defined by (4) (in particular, this means that g € C
and f(x,-) € C for ae. x € [0,y]). Then there exists an unique solution u(x,t) of
problem (1) in the domain (0, y) x R" in the class W(y). Moreover, there exists a constant
C(y)=C(a,b,c,a,B,q,y) such that

(6)

HﬂmwéawO@mm+mﬁm+fHﬂ&NmM)
0

Remark 1. Theorem 1 requires that functions f and g; are smooth in #; in particular, they
belong to C* in t. However, it is not required that f(x, ¢) is smooth in x.

Proof of theorem 1. Instead of (1), consider the following problems for p € C*:

U U
apU(x, p) = W(x, p) +ba(x, p)+cU(x, p)+ F(x, p), x>0,
(7
oU
U, p) = Go(p), E(O’ p) =Gi(p).

Let 1y = Xx(p) be the roots of the equation 22 +br+(c—ap) = 0. Clearly, A, =
—b/2 &+ Jap + ju. Recall that & > 0. It follows that the functions (A;(p) — A2(p))~! and
M(p)(hi(p) — Aa2(p) ™' k = 1,2, belong to H*.



12412 N Dokuchaev

For x € (0, y], the solution of (7) is

U@, p) = 5—- ((Gl(p) — 12Go(p)) e = (G1(p) — MiGo(p)) €™
—/x eI (s, p) ds+/x (s, p) ds). (8)
0 0

This can be derived, for instance, using the Laplace transform method applied to the linear
ordinary differential equation (7), and having in mind that

1 1 1 1 1
MRabri+c—ap (A—A)(A—Ly) Al —A (A—Al _A—Az>’

A B A 1 A Ao
Mabri+c—ap (A—i)DA—2) Al —A\A—Xi A—i )’

Let x € (0, ), s € [0, x]. The functions e~ k = 1,2, are holomorphic in C*.
We have

b A +
In| e(xfs)?»k(P)| =Re ((x — )i (p)) = (x — 5) (_5 + |ap +M|1/2 cos g (612[7 M)) ’

where k = 1, 2, p € C*. It follows that

|K (p) e(X*S)M(P)| < e(X*S)[*b/2+\ap+/4\]/2]*0tM|P+l3|(’

k=1,2, p € C*. Similarly,
|K (p) e)lkxl < exl*b/2+\ﬂp+,u|]/21*0tM|P+/3\”.

Since ¢ > 1/2, it follows that K (p) e™* € H", K(p)e“ 9% ¢ H" pK(p)e™* € H" and
pK (p) et ¢ H” forr =2 and r = +00. Moreover, we have

sup [|p" P Gr(p) e < CLONGll e,
s€[0,x]

sup [|p" e PEK (p)|lg= < Calx),

s€[0,x]

where m = 0, 1. Hence,

X
p" / "M F (s, p)ds
0

sup
xel0,y]

X
, < X:EPMA || 0= M B (s ) || 4p» ds

X ~ y e
< sup / I p" e K ($) | < | F (s, Pz ds < Ca(y) / IF (s, p)ll a2 ds,
x€[0,y] JO 0

where m = 0, 1. Here C(x), C,(x) are constants that depend on a, b, c, @, 8, g, x. It follows
that p" e**G,,(p) € H? and p" [ e“ M F(p,s)ds € H* for any x > O,m = 0,1,
k=1,2.

Recall that A, = Ax(p). Let
1

Al — A

Ak
A — Ao

A

H®  p=1,2 H>

It follows from the above estimates that

Ip"Ux, p)llz < N(a O > 1G], + c2<y)/ IF s, p>||szs>, m=0,1.
k=1,2 0

€))
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It follows that the corresponding inverse Fourier transforms u(x, -) = F U (x, i®)|yer,
‘g—i‘(x, ) = F ' (pU(x, iw)|,er) are well defined and are vanishing for ¢ < 0. In addition, we
have that U (x, iw) = U (x, —iw) (for instance, K (iw) = K (—iw), e*—9)*({w) = b=t (o)
etc). It follows that the inverse of the Fourier transform u(x, -) = F~'U(x, -) is real.

Further, we have that

oU Aix rox
a(x, p) = (G1(p) — M2Go(p)r1 €™ = (G1(p) — MGo(p))rre

Al — A2

X X
—/\1/ eM“—”F(s,p)dHM/ e’\Z(x_s)F(s,p)ds). (10)
0 0

Since A1 (p)A2(p) = ¢ — ap, we again obtain that

> ||6k||,,2+f0 IF (s, p)lle ds>. (11)

U
8—(x,p) < Ci(y)
X H? k=12

By (7), 3’U/dx? can be expressed as a linear combination of F, Gy, U, pU, dU/dx. By
9-(11),
2

’EJU

o 0P

aUu
<c4<y>( 5(“’)” £y ||p'"u<x,p>HH2+||F(x,p)||Hz>.
H?

H? m=0,1

We have that |[K(p)| < 1 on C* and || F (s, p)|lg> < ||1?(s, Pl g2. It follows that

32U ~ LIPS
ﬁ(x,P) - < Cs(y) Z ||Gk||Hz+/0 (s, p)lp2ds | . (12)
k=1,2

Here C(y) are constants that depend on a, b, ¢, «, B, g, y. By (9)—(12), estimate (6) holds.
Therefore, u(x, ) = F'U(x, iw)|qer is the solution of (1) in W(y). The uniqueness
is ensured by the linearity of the problem, by estimate (6), and by the fact that
Lu(x, ), L% u(x,-)/dx*) and L£(du(x,-/dt) are well defined on C* for any u € W(y).
This completes the proof of theorem 1. g

Remark 2. It can be seen from the proof that it is crucial that u(x, 0) = 0. Non-zero initial
conditions cannot be included.
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