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Abstract
The paper studies some ill-posed boundary value problems on semi-plane for
parabolic equations with the homogenous Cauchy condition at initial time and
with the second-order Cauchy condition on the boundary of the semi-plane. A
class of inputs that allows some regularity is suggested and described explicitly
in the frequency domain. This class is everywhere dense in the space of square
integrable functions.

PACS numbers: 02.60.Lj, 02.30.Jr, 02.30.Fn, 02.30.Tb
Mathematics Subject Classification: 35K20, 35Q99, 32A35

Parabolic equations such as heat equations have fundamental significance for natural sciences,
and various boundary value problems for them were widely studied including well-posed
problems as well as the so-called ill-posed problems that are often significant for applications.
The present paper introduces and investigates a special boundary value problem on semi-plane
for parabolic equations with the homogenous Cauchy condition at initial time and with the
second-order Cauchy condition on the boundary of the semi-plane. The problem is ill posed.
A set of solvability or a class of inputs that allows some regularity in the form of prior energy-
type estimates is suggested and described explicitly in the frequency domain. This class is
everywhere dense in the class of L2-integrable functions. This result looks counterintuitive,
since these boundary conditions are unusual; solvability of this boundary value problem for a
wider class of inputs is inconsistent with basic theory.

1. The problem setting

Let us consider the following boundary value problem:

a
∂u

∂t
(x, t) = ∂2u

∂x2
(x, t) + b

∂u

∂x
(x, t) + cu(x, t) + f (x, t),

u(x, 0) ≡ 0,

u(0, t) ≡ g0(t),
∂u

∂x
(0, t) ≡ g1(t).

(1)
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Here, x > 0, t > 0 and a > 0; b, c ∈ R are constants; gk ∈ L2(0, +∞), k = 1, 2; and f is a
measurable function such that

∫ y

0 dx
∫ ∞

0 |f (x, t)|2 dt < +∞ for all y > 0.
This problem is ill posed (see Tikhonov and Arsenin (1977)).
Let µ

�= b2/4 − c. We assume that µ > 0. Note that this assumption does not reduce
generality for the cases when we are interested in a solution on a finite time interval, since we
can rewrite the parabolic equation as that with c replaced by c − M for any M > 0 and gk(t)

replaced by e−Mtgk(t); the solution uM of the new equation is related to the solution u of the
old one as uM(x, t) = e−Mtu(x, t).

Definitions and special functions

Let R+ �= [0, +∞), C+ �= {z ∈ C : Re z > 0}. For v ∈ L2(R), we denote by Fv and Lv the
Fourier and the Laplace transforms, respectively:

V (iω) = (Fv)(iω)
�= 1√

2π

∫
R

e−iωtv(t) dt, ω ∈ R, (2)

V (p) = (Lv)(p)
�= 1√

2π

∫ ∞

0
e−ptv(t) dt, p ∈ C+. (3)

Let Hr be the Hardy space of holomorphic on C+ functions h(p) with finite norm
‖h‖Hr = supk>0 ‖h(k + iω)‖Lr(R), r ∈ [1, +∞] (see, e.g., Duren (1970)).

For y > 0, let W(y) be the Banach space of the functions u : (0, y) × R+ → R with the
finite norm

‖u‖W(y)
�= sup

x∈(0,y)

(
‖u(x, ·)‖L2(R+) +

∥∥∥∥∂u

∂x
(x, ·)

∥∥∥∥
L2(R+)

+

∥∥∥∥∂2u

∂x2
(x, ·)

∥∥∥∥
L2(R+)

+

∥∥∥∥∂u

∂t
(x, ·)

∥∥∥∥
L2(R+)

)
.

The class W(y) is such that all the equations presented in problem (1) are well defined for
any u ∈ W(y) and in the domain (0, y) × R+. For instance, if v ∈ W(y), then, for any
t∗ > 0, we have that v|[0,y]×[0,t∗] ∈ C([0, t∗], L2(0, y)) as a function of t ∈ [0, t∗]. Hence,
the initial condition at time t = 0 is well defined as an equality in L2([0, y]). Further, we
have that v|[0,y]×R+ ∈ C([0, y], L2(R+)) and ∂v

∂x

∣∣
[0,y]×R+ ∈ C([0, y], L2(R+)) as functions of

x ∈ [0, y]. Hence the functions v(0, t), dv
dx

(x, t)|x=0 are well defined as elements of L2(R+),
and the boundary value conditions at x = 0 are well defined as equalities in L2(R+).

Special smoothing kernel

Let us introduce the set of the following special function:

K(p) = Kα,β,q(p)
�= e−α(p+β)q , p ∈ C+. (4)

Here α > 0, β > 0 are reals and q ∈ (
1
2 , 1

)
is a rational number. We mean the branch of

(p + β)q such that its argument is q Arg (p + β), where Arg z ∈ (−π, π ] denotes the principal
value of the argument of z ∈ C.

The functions Kα,β,q(p) are holomorphic in C+, and

ln |K(p)| = −Re (α(p + β)q) = −α|p + β|q cos[q Arg (p + β)].

In addition, there exists M = M(β, q) > 0 such that cos[q Arg (p + β)] > M for all p ∈ C+.
It follows that

|K(p)| � e−αM|p+β|q < 1, p ∈ C+. (5)

Hence, K ∈ Hr for all r ∈ [1, +∞].
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Proposition 1. Let β > 0 and a rational number q ∈ (
1
2 , 1

)
be given. Let v ∈ L2(R+), V =

Lv ∈ H 2. For α > 0, set Vα
�= Kα,β,qV , vα

�= F−1Vα(iω)|ω∈R. Then Vα ∈ H 2 and vα → v

in L2(R+) as α → 0, α > 0.

Proof. Clearly, Vα(iω) → V (iω) as α → 0 for a.e. ω ∈ R. By (4), Vα ∈ H 2. In addition,
|Kα,β,q(iω)| � 1. Hence, |Vα(iω) − V (iω)| � 2|V (iω)|. We have that ‖V (iω)‖L2(R) =
‖v‖L2(R+) < +∞. By the Lebesgue dominance theorem, it follows that

‖Vα(iω) − V (iω)‖L2(R) → 0 as α → 0.

Hence, vα → v in L2(R+) as α → 0. Then the proof follows. �

The inverse Fourier transform k(t) = F−1Kα,β,q(iω)|ω∈R can be viewed as a smoothing
kernel; k(t) = 0 for t < 0. It can be seen that k has derivatives of any order.

Denote by C the set of functions v : R+ → R such that there exist α > 0, β > 0, and a
rational number q ∈ (

1
2 , 1

)
, such that V̂ ∈ H 2, where V̂ (p) = Kα,β,q(p)−1V (p), V = Lv.

The set C includes outputs of the convolution integral operators with the kernels k(t). By
proposition 1, it follows that the set C is everywhere dense in L2(R+).

2. The main result

Set F(x, ·) �= Lf (x, ·), where x > 0 is given, and Gk
�= Lgk, k = 0, 1.

Theorem 1. Let the functions f and gk are such that there exist y > 0, α > 0, β > 0,
a rational number q ∈ (

1
2 , 1

)
, such that Ĝk ∈ H 2, F̂ (x, ·) ∈ H 2 for a.e. x > 0 and∫ y

0 ‖F̂ (s, ·)‖H 2 ds < +∞, where

F̂ (x, p)
�= F(x, p)

K(p)
, Ĝk(p)

�= Gk(p)

K(p)
, (6)

and where the function K = Kα,β,q is defined by (4) (in particular, this means that gk ∈ C
and f (x, ·) ∈ C for a.e. x ∈ [0, y]). Then there exists an unique solution u(x, t) of
problem (1) in the domain (0, y) × R+ in the class W(y). Moreover, there exists a constant
C(y) = C(a, b, c, α, β, q, y) such that

‖u‖W(y) � C(y)

(
‖Ĝ1‖H 2 + ‖Ĝ2‖H 2 +

∫ x

0
‖F̂ (s, ·)‖H 2 ds

)
.

Remark 1. Theorem 1 requires that functions f and gk are smooth in t; in particular, they
belong to C∞ in t. However, it is not required that f (x, t) is smooth in x.

Proof of theorem 1. Instead of (1), consider the following problems for p ∈ C+:

apU(x, p) = ∂2U

∂x2
(x, p) + b

∂U

∂x
(x, p) + cU(x, p) + F(x, p), x > 0,

U(0, p) ≡ G0(p),
∂U

∂x
(0, p) ≡ G1(p).

(7)

Let λk = λk(p) be the roots of the equation λ2 + bλ + (c − ap) = 0. Clearly, λ1,2
�=

−b/2 ± √
ap + µ. Recall that µ > 0. It follows that the functions (λ1(p) − λ2(p))−1 and

λk(p)(λ1(p) − λ2(p))−1, k = 1, 2, belong to H∞.
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For x ∈ (0, y], the solution of (7) is

U(x, p) = 1

λ1 − λ2

(
(G1(p) − λ2G0(p)) eλ1x − (G1(p) − λ1G0(p)) eλ2x

−
∫ x

0
eλ1(x−s)F (s, p) ds +

∫ x

0
eλ2(x−s)F (s, p) ds

)
. (8)

This can be derived, for instance, using the Laplace transform method applied to the linear
ordinary differential equation (7), and having in mind that

1

λ2 + bλ + c − ap
= 1

(λ − λ1)(λ − λ2)
= 1

λ1 − λ2

(
1

λ − λ1
− 1

λ − λ2

)
,

λ

λ2 + bλ + c − ap
= λ

(λ − λ1)(λ − λ2)
= 1

λ1 − λ2

(
λ1

λ − λ1
− λ2

λ − λ2

)
.

Let x ∈ (0, y), s ∈ [0, x]. The functions e(x−s)λk(p), k = 1, 2, are holomorphic in C+.
We have

ln | e(x−s)λk(p)| = Re ((x − s)λk(p)) = (x − s)

(
−b

2
± |ap + µ|1/2 cos

Arg (ap + µ)

2

)
,

where k = 1, 2, p ∈ C+. It follows that

|K(p) e(x−s)λk(p)| � e(x−s)[−b/2+|ap+µ|1/2]−αM|p+β|q ,

k = 1, 2, p ∈ C+. Similarly,

|K(p) eλkx | � ex[−b/2+|ap+µ|1/2]−αM|p+β|q .

Since q > 1/2, it follows that K(p) eλkx ∈ Hr,K(p) e(x−s)λk(p) ∈ Hr, pK(p) eλkx ∈ Hr and
pK(p) e(x−s)λk(p) ∈ Hr , for r = 2 and r = +∞. Moreover, we have

sup
s∈[0,x]

‖pm eλk(p)sGk(p)‖H 2 � C1(x)‖G̃k‖H 2 ,

sup
s∈[0,x]

‖pm eλk(p)sK(p)‖H∞ � C2(x),

where m = 0, 1. Hence,

sup
x∈[0,y]

∥∥∥∥pm

∫ x

0
e(x−s)λkF (s, p) ds

∥∥∥∥
H 2

� sup
x∈[0,y]

∫ x

0

∥∥ e(x−s)λkpmF(s, p)
∥∥

H 2 ds

� sup
x∈[0,y]

∫ x

0
‖pm eλk(x−s)K(s)‖H∞‖F̃ (s, p)‖H 2 ds � C2(y)

∫ y

0
‖F̂ (s, p)‖H 2 ds,

where m = 0, 1. Here C1(x), C2(x) are constants that depend on a, b, c, α, β, q, x. It follows
that pm eλkxGm(p) ∈ H 2 and pm

∫ x

0 e(x−s)λkF (p, s) ds ∈ H 2 for any x > 0,m = 0, 1,

k = 1, 2.
Recall that λk = λk(p). Let

N
�=

∥∥∥∥ 1

λ1 − λ2

∥∥∥∥
H∞

+
∑
k=1,2

∥∥∥∥ λk

λ1 − λ2

∥∥∥∥
H∞

.

It follows from the above estimates that

‖pmU(x, p)‖H 2 � N

(
C1(y)

∑
k=1,2

∥∥Ĝk

∥∥
H 2 + C2(y)

∫ x

0
‖F̂ (s, p)‖H 2 ds

)
, m = 0, 1.

(9)
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It follows that the corresponding inverse Fourier transforms u(x, ·) = F−1U(x, iω)|ω∈R,
∂u
∂t

(x, ·) = F−1(pU(x, iω)|ω∈R) are well defined and are vanishing for t < 0. In addition, we

have that U(x, iω) = U(x,−iω) (for instance, K(iω) = K(−iω), e(x−s)λk(iω) = e(x−s)λk(−iω),
etc). It follows that the inverse of the Fourier transform u(x, ·) = F−1U(x, ·) is real.

Further, we have that

∂U

∂x
(x, p) = 1

λ1 − λ2

(
(G1(p) − λ2G0(p))λ1 eλ1x − (G1(p) − λ1G0(p))λ2 eλ2x

− λ1

∫ x

0
eλ1(x−s)F (s, p) ds + λ2

∫ x

0
eλ2(x−s)F (s, p) ds

)
. (10)

Since λ1(p)λ2(p) = c − ap, we again obtain that∥∥∥∥∂U

∂x
(x, p)

∥∥∥∥
H 2

� C3(y)

( ∑
k=1,2

∥∥Ĝk

∥∥
H 2 +

∫ x

0
‖F̂ (s, p)‖H 2 ds

)
. (11)

By (7), ∂2U/∂x2 can be expressed as a linear combination of F,Gk,U, pU, ∂U/∂x. By
(9)–(11),∥∥∥∥∂2U

∂x2
(x, p)

∥∥∥∥
H 2

� C4(y)

(∥∥∥∥∂U

∂x
(x, p)

∥∥∥∥
H 2

+
∑

m=0,1

∥∥pmU(x, p)
∥∥

H 2 + ‖F(x, p)‖H 2

)
.

We have that |K(p)| < 1 on C+ and ‖F(s, p)‖H 2 � ‖F̂ (s, p)‖H 2 . It follows that∥∥∥∥∂2U

∂x2
(x, p)

∥∥∥∥
H 2

� C5(y)

( ∑
k=1,2

∥∥Ĝk

∥∥
H 2 +

∫ x

0
‖F̂ (s, p)‖H 2 ds

)
. (12)

Here Ck(y) are constants that depend on a, b, c, α, β, q, y. By (9)–(12), estimate (6) holds.
Therefore, u(x, ·) = F−1U(x, iω)|ω∈R is the solution of (1) in W(y). The uniqueness

is ensured by the linearity of the problem, by estimate (6), and by the fact that
Lu(x, ·),L(∂ku(x, ·)/∂xk) and L(∂u(x, ·/∂t) are well defined on C+ for any u ∈ W(y).
This completes the proof of theorem 1. �

Remark 2. It can be seen from the proof that it is crucial that u(x, 0) ≡ 0. Non-zero initial
conditions cannot be included.
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